Interplay between hydration water and headgroup dynamics in lipid bilayers.

نویسندگان

  • P Berntsen
  • C Svanberg
  • J Swenson
چکیده

In this study, the interplay between water and lipid dynamics has been investigated by broadband dielectric spectroscopy and modulated differential scanning calorimetry (MDSC). The multilamellar lipid bilayer system 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) has been studied over a broad temperature range at three different water contents: about 3, 6, and 9 water molecules per lipid molecule. The results from the dielectric relaxation measurements show that at temperatures <250 K the lipid headgroup rotation is described by a super-Arrhenius temperature dependence at the lowest hydration level and by the Arrhenius law at the highest hydration level. This difference in the temperature dependence of the lipid headgroup rotation can be explained by the increasing interaction between the headgroups with decreasing water content, which causes their rotational motion to be more cooperative in character. The main water relaxation shows an anomalous dependence on the water content in the supercooled and glassy regime. In contrast to the general behavior of interfacial water, the water dynamics is fastest in the driest sample and its temperature dependence is best described by a super-Arrhenius temperature dependence. The best explanation for this anomalous behavior is that the water relaxation becomes more determined by fast local lipid motions than by the intrinsic water dynamics at low water contents. In support for this interpretation is the finding that the relaxation time of the main water process is faster than that in most other host systems at temperatures below 180 K. Thus, the dielectric relaxation data show clearly the strong interplay between water and lipid dynamics; the water influences the lipid dynamics and vice versa. In the MDSC data, we observe a weak enthalpy relaxation at 203 K for the driest sample and at 179 K for the most hydrated sample, attributed to the freezing-in of the lipid headgroup rotation observed in the dielectric data, since this motion reaches a time scale of about 100 s at about the same temperatures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: molecular dynamics simulations.

The association between monovalent salts and neutral lipid bilayers is known to influence global bilayer structural properties such as headgroup conformational fluctuations and the dipole potential. The local influence of the ions, however, has been unknown due to limited structural resolution of experimental methods. Molecular dynamics simulations are used here to elucidate local structural re...

متن کامل

Molecular Insight into the Mutual Interactions of Two Transmembrane Domains of Human Glycine Receptor (TM23-GlyR), with the Lipid Bilayers

Appearing as a computational microscope, MD simulation can ‘zoom in’ to atomic resolution to assess detailed interactions of a membrane protein with its surrounding lipids, which play important roles in the stability and function of such proteins. This study has employed the molecular dynamics (MD) simulations, to determine the effect of added DMPC or DMTAP molecules on the structure of D...

متن کامل

Lipid hydration and mobility: an interplay between fluorescence solvent relaxation experiments and molecular dynamics simulations.

Fluorescence solvent relaxation experiments are based on the characterization of time-dependent shifts in the fluorescence emission of a chromophore, yielding polarity and viscosity information about the chromophore's immediate environment. A chromophore applied to a phospholipid bilayer at a well-defined location (with respect to the z-axis of the bilayer) allows monitoring of the hydration an...

متن کامل

Hydration of the dienic lipid dioctadecadienoylphosphatidylcholine in the lamellar phase--an infrared linear dichroism and x-ray study on headgroup orientation, water ordering, and bilayer dimensions.

In the phospholipid 1,2-bis(2,4-octadecadienoyl)-sn-glycero-3-phosphorylcholine (DODPC) in each of the fatty acid chains, a rigid diene group is inserted in a position near the polar/apolar boundary that is exceptionally sensitive for membrane stability. DODPC transforms upon gradual dehydration from the liquid-crystalline to a metastable gel state, which rearranges into two subgel phases at lo...

متن کامل

Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers.

We have applied a new equilibration procedure for the atomic level simulation of a hydrated lipid bilayer to hydrated bilayers of dioleyl-phosphatidylcholine (DOPC) and palmitoyl-oleyl phosphatidylcholine (POPC). The procedure consists of alternating molecular dynamics trajectory calculations in a constant surface tension and temperature ensemble with configurational bias Monte Carlo moves to d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 115 8  شماره 

صفحات  -

تاریخ انتشار 2011